Вынужденные колебания

Вынужденные колебания

Уравнение второго закона Ньютона при наличии силы трения имеет вид (1.2) Применим следующие обозначения (1.3) Тогда (1.4) Где 0 — собственная частота колебательной системы. Будем искать решение уравнения в виде (1.5) Найдём первую и вторую производные Подставим выражения в уравнение (1.5) Сократим на (1.6) Решение уравнения (1.6) зависит от знака коэффициента, стоящего при и.

Рассмотрим случай, когда этот коэффициент положителен (т. е. b 0 — трение мало). Введя обозначение придем к уравнению Решением этого уравнения будет функция Подставляя это выражение в уравнение (1.5), имеем Здесь A 0 и — постоянные, значения которых зависят от начальных условий, — величина, определяемая формулой Скорость затухания колебаний определяется величиной , которую называют коэффициентом затухания. Для характеристики колебательной системы употребляется также величина называемая добротностью колебательной системы. Она пропорциональна числу колебаний N e , совершаемых системой за то время t , за которое амплитуда колебаний уменьшается в e раз.

Вынужденные колебания.

Допустим, что механическая колебательная система подвергается действию внешней силы, изменяющейся со временем по гармоническому закону: (2.1) В этом случае уравнение второго закона Ньютона имеет вид Введя обозначения (1.3), преобразуем уравнение приобретёт вид: (2.2) Здесь b — коэффициент затухания, 0 — собственная частота колебательной системы, — частота вынуждающей силы.

Дифференциальное уравнение (2.2) описывает вынужденные колебания.

Решение этого уравнения равно сумме общего решения соответствующего однородного уравнения и частного решения неоднородного уравнения. Общее решение однородного уравнения уже найдено (1.7), оно имеет вид Где Попробуем найти частное решение (2.2) в виде (2.4) где — неизвестный пока сдвиг фаз между силой и вызываемыми ею колебаниями. (2.5) (2.6) Развернем и по формулам для синуса и косинуса разности и подставим в формулу (2.2) Сгруппируем члены уравнения: (2.7) Уравнение (2.7) будет тождественно при любых значениях t тогда, когда коэффициенты при cos t и sin t в обеих частях уравнения будут одинаковыми. (2.8) (2.9) Найдём значения A и при которых функция (2.4) удовлетворяет уравнению (2.2). Для этого возведём равенства (2.8) и (2.9) в квадрат и сложим их друг с другом (2.10) Из (2.9) следует, что (2.11) Подставим значения A и (2.12) Общее решение имеет вид Первое слагаемое играет заметную роль только в начальной стадии процесса, при установлении колебаний. С течением времени из-за экспоненциального множителя роль слагаемого уменьшается, и по прошествии достаточного времени им можно пренебречь, сохранив в решении только второе.

Зависимость амплитуды вынужденных колебаний от частоты вынуждающей силы (2.10) приводит к тому, что при некоторой частоте амплитуда достигает максимального значения.

Колебательная система оказывается особенно отзывчивой на действие вынуждающей силы при данной частоте. Это явление называется резонансом, а соответствующая частота — резонансной частотой. Для того чтобы определить резонансную частоту рез , нужно найти максимум функции (2.10), т.е. продифференцировать это выражение по и приравняв производную нулю: Решения этого уравнения =0 и решение, равное нулю, соответствует максимуму знаменателя, а не имеет физического смысла ( частота не может быть отрицательной). (2.13). Следовательно (2.14) b . Чем меньше b , тем выше и правее лежит максимум резонансной кривой. При очень большом затухании (таком, что b 2 > 0 ) выражение для резонансной частоты становится мнимым. Это означает, что резонанс в этом случае не наблюдается — с увеличением частоты амплитуда монотонно убывает.

Разное

Подобные работы

Сложение колебаний

echo "Рассмотрим сложение двух гармонических колебаний одного направления и одинаковой частоты. Результирующее колебание будет суммой колебаний х 1 и x 2 , которые определяются функциями "; echo '';

Движение в центральном симметричном поле

echo "Действительно, поскольку направление действующей на частицу силы проходит через центр поля, то равно нулю плечо силы относительно этой точки, а потому равен нулю и момент силы. Согласно уравнен

Мир в котором мы живем (путешествие в глубь материи)

echo "Отправной точкой в её странствиях всегда была Земля. Когда-то и она казалась необозримо большой и граница видимого горизонта считалась краем света. Но в 1521 г. завершилось первое кругосветное п

Волны в упругой среде. Волновое уравнение

echo "Преподаватель: Степанюк Владислав Николаевич. г. Домодедово. 1999 год. СОДЕРЖАНИЕ. стр. Глава I. Волна. § 1. Понятие упругой волны. Поперечные и продольные волны. .............................

Оптика глаза

echo "Исследование показывает, что более 95% младенцев рождается с нормальным зрением и без дефектов глаз. Но, как видно из таблицы 1, очень малый процент их достигает пожилого возраста со зрением, ко

Нейроподобный элемент нейрон

echo "Взвешенные весами связей входные сигналы поступают на блок суммации, соответствующий телу клетки, где осуществляется их алгебраическая суммация и определяется уровень возбуждения нейроподобного

Спектры и спектральный анализ в физике

echo "Солнечный спектр или спектр дугового фонаря является непрерывным. Это означает, что в спектре представлены все длины волн. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную

Цвет и его свойства

echo "Физические свойства излучения – мощность и длина волны – тесно связаны со свойствами возбуждаемого им ощущения. С изменением мощности изменяется светлота, а с изменением дли волны цветность. Пе